RTO原理是将有机废气(VOCs)加热到760℃以上,使废气中的VOCs氧化分解成CO2和H2O,氧化产生的高温气体采用蜂窝陶瓷蓄热体进行能量储存,并用来预热后续进入的有机废气,当废气中VOCs浓度到达一定值时,系统可不消耗额外燃料而维持反应的自平衡。
宣城医疗垃圾焚烧工厂
较好的做法是首先把生产所需的关键设备安装到位,然后再回头去完成剩下的设备连结。这种看似“漫无目标”(scattershot)的方法虽然增加了建设阶段的成本,但却有可能减少设备增加产量所需的时间,并制定出在节约成本方面更为有效的设备购置时间表。批准的延误、设备连结不全以及类似的问题会影响到整个项目的进度和预算。例如,安装队到达后发现工厂尚未做好安装设备的准备,于是他们要么无事可做地傻等,要么只好先行返回以待问题得到纠正。
具有运行能耗低、适用范围广、净化效率高(≥98%)等优点,根据具体情况,可采用3室RTO、5室RTO及旋转RTO,常运用于石化、印刷、印铁、制罐、化工、制药、喷涂、电子半导体等行业。
沸石转轮浓缩+RTO工艺
Rotary Concentration & RTO Technology
采用沸石转轮(如:Munters、SEIBU GIKEN、NICHIAS、TOYOBO、Napotec等)将较中低浓度、中大风量的VOCs废气浓缩成较小风量、高浓度的废气,然后引入RTO进行高温氧化,氧化后产生的一部分能量用于再生沸石转轮,另一部分用于维持RTO反应的自平衡。
该工艺适用于有机废气浓度较低但排放要求较高的场合,具有处理效率高(综合效率≥95%)、运行能耗低等特点,常用于涂布、印刷、电子、涂装等行业。
宣城医疗垃圾焚烧工厂
工业互联网从生产流程、物流等多个环节对制造业价值链进行优化和再造。在生产流程方面,利用机器和产品运行的实时数据,制造商能采用无缝连接,对产品的整个生命周期进行追踪和控制。可以对这些数据进行预测性分析,以确定可能的设备或零部件故障,从而制定预防型维护计划,缩短设备宕机时间,实现平稳运营。生产流程的优化减少了机器的使用成本,提高了生产效率的同时,也提高了生产制造端的附加价值。工业互联网对于传统重资产行业具有革命性意义。