中卫市UASB厌氧反应器
UASB厌氧反应器优势:
废水厌氧生物技术由于其巨大的处理能力和潜在的应用前景,一直是水处理技术研究的热点。从传统的厌氧接触工艺发展到现今广泛流行的UASB工艺,废水厌氧处理技术已日趋成熟。随着生产发展与资源、能耗、占地等因素间矛盾的进一步突出,现有的厌氧工艺又面临着严峻的挑战,尤其是如何处理生产发展带来的大量高浓度有机废水,使得研发技术经济更优化的厌氧工艺非常必要。内循环厌氧处理技术(以下简称IC厌氧技术)就是在这一背景下产生的高效处理技术,它是20世纪80年代中期由荷兰PAQUES公司研发成功,并推入废水处理工程市场,目前已成功应用于土豆加工、啤酒、食品和柠檬酸等废水处理中。
盘锦市UASB厌氧反应器火热节能
优点是:
1、UASB内污泥浓度高,平均污泥浓度为20-40gVSS/1;
2、有机负荷高,水力停留时间短,采用中温发酵时,容积负荷一般为10kgCOD/m3.d左右;
3、无混合搅拌设备,靠发酵过程中产生的沼气的上升运动,使污泥床上部的污泥处于悬浮状态,对下部的污泥层也有一定程度的搅动;
4、污泥床不填载体,节省造价及避免因填料发生堵赛问题;
5、UASB内设三相分离器,通常不设沉淀池,被沉淀区分离出来的污泥重新回到污泥床反应区内,通常可以不设污泥回流设备。
反应器原理
UASB由污泥反应区、气液固三相分离器(包括沉淀区)和气室三部分组成。在底部反应区内存留大量厌氧污泥,具有良好的沉淀性能和凝聚性能的污泥在下部形成污泥层。要处理的污水从厌氧污泥床底部流入与污泥层中污泥进行混合接触,污泥中的微生物分解污水中的有机物,把它转化为沼气。沼气以微小气泡形式不断放出,微小气泡在上升过程中,不断合并,逐渐形成较大的气泡,在污泥床上部由于沼气的搅动形成一个污泥浓度较稀薄的污泥和水一起上升进入三相分离器,沼气碰到分离器下部的反射板时,折向反射板的四周,然后穿过水层进入气室,集中在气室沼气,用导管导出,固液混合液经过反射进入三相分离器的沉淀区,污水中的污泥发生絮凝,颗粒逐渐增大,并在重力作用下沉降。沉淀至斜壁上的污泥沿着斜壁滑回厌氧反应区内,使反应区内积累大量的污泥,与污泥分离后的处理出水从沉淀区溢流堰上部溢出,然后排出污泥床。
UASB的启动
1、污泥的驯化
UASB设备启动的难点是获得大量沉降性能良好的厌氧颗粒污泥。加以驯化,一般需要3-6个月,如果靠设备自身积累,投产期可长达1-2年。实践表明,投加少量的载体,有利于厌氧菌的附着,促进初期颗粒污泥的形成;比重大的絮状污泥比轻的易于颗粒化;比甲烷活性高的厌氧污泥可缩短启动期。
2、启动操作要点
(1)应一次投加足够量的接种污泥;
(2)启动初期从污泥床流出的污泥可以不予回流,以使特别轻的和细碎污泥跟悬浮物连续地从污泥床排出体外,使较重的活性污泥在床内积累,并促进其增殖逐步达到颗粒化;
(3)启动开始废水COD浓度较低时,未必就能让污泥颗粒化速度加快;
(4)污泥负荷率一般在0.1-0.2kgCOD/kgTSS.d左右比较合适;
(5)污水中原来存在的和厌氧分解出来的多种挥发酸未能有效分解之前,不应随意提高有机容积负荷,这需要跟踪观察和水样化验;
(6)可降解的COD去除率达到70-80%左右时,可以逐步增加有机容积负荷率;
(7)为促进污泥颗粒化,反应区内的小空塔速度不可低于1m/d,采用较高的表面水力负荷有利于小颗粒污泥与污泥絮凝分开,使小颗粒污泥凝并为大颗粒。
附属设备
1、剩余沼气燃烧器
一般不允许将剩余沼气向空气中排放,以防污染大气。在确有剩余沼气无法利用时,可安装余气燃烧器将其烧掉。燃烧器应装在安全地区,并应在其前安装阀门和阻火器。剩余气体燃烧器,是—种安全装置,要能自动点火和自动灭火。剩余气体燃烧器和消化池盖、或贮气柜之间的距离,一般至少需要15m,并应设置在容易监视的开阔地。
2、保温加热设备
厌氧消化像其他生物处理工艺一样受温度影响很大,厌氧工艺受温度影响更加显著。中温厌氧消化的温度范围从30~35℃,可以计算在20℃和10℃的消化速率大约分别是30℃下大值的35%和12%。所以,加温和保温的重要性是不言而喻的。如果工厂或附近有可利用的废热或者需要从出水中间收效量,则安装热交换器是必要的。
3、监控设备
为提高厌氧反应器的运行可靠性,必须设置各种类型的计量设备和仪表,如控制进水量、投药量等计量设备和pH计(酸度计)、温度测量等自动化仪表。自动计量设备和仪表是自动控制的基础。对UASB厌氧反应器实行监控的目的主要有两个,一个是了解进出水的情况,以便观测进水是否满足工艺设计情况;另外一个目的是为了控制各工艺的运行,判断工艺运行是否正常。由于UASB厌氧反应器的特殊性还要增加一些检测项目,如挥发性有机酸(VFA)、碱度和甲烷等。但是,这些设备属于标准设备,一些设备还很难形成在线的测量和控制 。
分离装置
三相分离器是UASB厌氧反应器较有特点和重要的装置。它同时具有两个功能:
1) 能收集从分离器下的反应室产生的沼气;
2) 使得在分离器之上的悬浮物沉淀下来。
三相分离器设计要点汇总:
1) 集气室的隙缝部分的面积应该占反应器全部面积的15~20%;
2) 在反应器高度为5~7m时,集气室的高度在1.5~2m;
3) 在集气室内应保持气液界面以释放和收集气体,防止浮渣或泡沫层的形成;
4) 在集气室的上部应该设置消泡喷嘴,当处理污水有严重泡沫问题时消泡;
5) 反射板与隙缝之间的遮盖应该在100~200mm以避免上升的气体进入沉淀室;
6) 出气管的直管应该充足以保证从集气室引出沼气,特别是有泡沫的情况。
UASB的设计
UASB的工艺设计主要是计算UASB的容积、产气量、剩余污泥量、营养需求的平衡量。UASB的池形状有圆形、方形、矩形。污泥床高度一般为3-8m,多用钢筋混凝土建造。当污水有机物浓度比较高时,需要的沉淀区与反应区的容积比值小,反应区的面积可采用与沉淀区相同的面积和池形。当污水有机物浓度低时,需要的沉淀面积大,为了保证反应区的一定高度,反应区的面积不能太大时,则可采用反应区的面积小于沉淀区,即污泥床上部面积大于下部的池形。气液固三相分离器是UASB的重要组成部分,它对污泥床的正常运行和获良好的出水水质起十分重要的作用,因此设计时应给予特别的重视。
三相分离器应满足以下几点要求:
1、混和液进入沉淀区之关,必须将其中的气泡予以脱出,防止气泡进入沉淀区影响沉淀;
2、沉淀器斜壁角度约可大于45度角;
3、沉淀区的表面水力负荷应在0.7m3/m2.h以下,进入沉淀区前,通过沉淀槽低缝的流速不大于2m/m2.h;
4、处于集气器的液一气界面上的污泥要很好地使之浸没于水中;
5、应防止集气器内产生大量泡沫。
构造
UASB厌氧反应器包括以下几个部分:进水和配水系统、反应器的池体和三相分离器。
在UASB厌氧反应器中重要的设备是三相分离器,这一设备安装在反应器的顶部并将反应器分为下部的反应区和上部的沉淀区。为了在沉淀器中取得对上升流中污泥絮体/颗粒的满意的沉淀效果,三相分离器*个主要的目的就是尽可能有效地分离从污泥床/层中产生的沼气,特别是在高负荷的情况下,在集气室下面反射板的作用是防止沼气通过集气室之间的缝隙逸出到沉淀室,另外挡板还有利于减少反应室内高产气量所造成的液体絮动。反应器的设计应该是只要污泥层没有膨胀到沉淀器,污泥颗粒或絮状污泥就能滑回到反应室(应该认识到有时污泥层膨胀到沉淀器中不是一件坏事。相反,存在于沉淀器内的膨胀的泥层将网捕分散的污泥颗粒/絮体,同时它还对可生物降解的溶解性COD起到一定的去除作用)。只一方面,存在一定可供污泥层膨胀的自由空间,以防止重的污泥在暂时性的有机或水力负荷冲击下流失是很重要的。水力和有机(产气率)负荷率两者都会影响到污泥层以及污泥床的膨胀。UASB系统原理是在形成沉降性能良好的污泥凝絮体的基础上,并结合在反应器内设置污泥沉淀系统使气、液、固三相得到分离。形成和保持沉淀性能良好的污泥(其可以是絮状污泥或颗粒型污泥)是UASB系统良好运行的根本点 。
中卫市UASB厌氧反应器
明基环保通过主业的发展壮大,通过科技的不断创新,通过文化的普及渗透,通过长期的不懈努力,聚合点点滴滴的资源与能量,创生无限大的生态循环和生态和谐,回馈社会,报效,服务百姓,造福人类。关注环境保护,促进生态平衡,实现人与人之间、人与自然之间和谐友好。
UASB厌氧反应器优势:
废水厌氧生物技术由于其巨大的处理能力和潜在的应用前景,一直是水处理技术研究的热点。从传统的厌氧接触工艺发展到现今广泛流行的UASB工艺,废水厌氧处理技术已日趋成熟。随着生产发展与资源、能耗、占地等因素间矛盾的进一步突出,现有的厌氧工艺又面临着严峻的挑战,尤其是如何处理生产发展带来的大量高浓度有机废水,使得研发技术经济更优化的厌氧工艺非常必要。内循环厌氧处理技术(以下简称IC厌氧技术)就是在这一背景下产生的高效处理技术,它是20世纪80年代中期由荷兰PAQUES公司研发成功,并推入废水处理工程市场,目前已成功应用于土豆加工、啤酒、食品和柠檬酸等废水处理中。