IC厌氧反应器处理工艺
山东明基环保设备有限公司是从事现代环保水处理机械设备制造的厂商,公司基础设施强大,技术力量雄厚,总占地面积18000多平方米,企业内部管理完善,通过ISO9001:2000质量体系认证,多次被评为产品质量信的过企业,重合同守信用单位。山东明基环保将以优质的产品、完善的的售后服务,精益求精、开拓进取的务实精神服务于广大用户。
厌氧生物处理的主要特点有哪些?
⑴ 能耗较低:因为厌氧生物处理不需要供氧,能源消耗约为好氧活性污泥法的1/10,还能产生具有较高热值的甲烷气(CH4)。每去除1gCODcr可以产生0.35标准升甲烷或0.7标准升沼气。沼气的热值为22.7KJ/L,甲烷的热值为39300KJ/m3,一般天然气的热值为34300KJ/m3 。
⑵ 污泥产量低:因为厌氧微生物的增殖速率比好氧微生物低得多,好氧生物处理系统每处理1kgCODcr产生的污泥量为0.25~0.6kg,而厌氧生物处理系统每处理1kgCODcr产生的污泥量只有0.02~0.18kg。
⑶可对好氧生物处理系统不能降解的一些大分子有机物进行彻底降解或部分降解。
⑷ 厌氧微生物对温度、PH等环境因素的变化更为敏感,运行管理好厌氧生物处理系统的难度较大。
⑸ 水温适应广:好氧处理水温在10~35℃之间,当高温时就需采取降温措施;而厌氧处理水温适应广泛,分低温厌氧(10~30℃)、中温厌氧(30~40℃)和高温厌氧(50~60℃)。
厌氧生物处理的影响因素有哪些?
⑴ 温度。存在两个不同的温度范围(55℃左右,35℃左右)。通常所称高温厌氧消化和低温厌氧消化即对应这两个温度范围。
⑵ pH值。厌氧消化pH值范围为6.8~7.2
⑶ 有机负荷。由于厌氧生物处理几乎对污水中的所有有机物都有降解作用,因此讨论厌氧生物处理时,一般都以CODcr来分析研究,而不象好氧生物处理那样必须以BOD5为依据。厌氧处理的有机负荷通常以容积负荷和一定的CODcr去除率来表示。
⑷ 营养物质。厌氧法中碳氮磷的比值控制在CODcr:N:P=(200~300):5:1即可。甲烷菌对硫化氢的需要量为11.5mg/L。有时需补充某些必需的特殊营养元素,甲烷菌对硫化物和磷有专性需要,而铁、镍、锌、钴、钼等对甲烷菌有激活作用。
⑸ 氧化还原电位。氧化还原电位可以表示水中的含氧浓度,非甲烷厌氧微生物可以在氧化还原电位小于+100mV的环境下生存,而适合产甲烷菌活动的氧化还原电位要低于-150mV,在培养甲烷菌的初期,氧化还原电位要不高于-330mV。
⑹ 碱度。废水的碳酸氢盐所形成的碱度对pH值的变化有缓冲作用,如果碱度不足,就需要投加碳酸氢钠和石灰等碱剂来保证反应器内的碱度适中。
⑺ 有毒物质。
⑻ 水力停留时间。水力停留时间对于厌氧工艺的影响主要是通过上流速度来表现出来的。一方面,较高的水流速度可以提高污水系统内进水区的扰动性,从而增加生物污泥与进水有机物之间的接触,提高有机物的去除率。另一方面,为了维持系统中能拥有足够多的污泥,上流速度又不能超过一定限值。
工作原理
经过调节pH和温度的废水先进入反应器底部的混合区,并与来自外循环回流的泥水混合液充分混合后进入颗粒污泥膨胀床区进行COD生化降解,此处的COD容积负荷很高,大部分进水COD在此处被降解,产生大量沼气。由于沼气气泡形成过程中对液体做的膨胀功产生了气提的作用,使得沼气、污泥和水的混合物上升,经过填料区的降解后,混合液至反应器顶部的三相分离器,沼气在该处与泥水分离后并被导出处理系统。泥水混合物则沿挡泥板下降至反应器底部的混合区,并于进水充分混合后再次进入污泥膨胀床区,形成所谓内循环。根据不同的进水COD负荷和反应器的不同构造,外循环回流量可达进水流量的0.5-10倍。经膨胀床处理后的废水除一部分参与循环外,其余污水继续上升,污水进入填料区进行剩余COD降解与产沼气过程,提高和保证了出水水质。由于大部分COD已经被降解,所以填料区的COD负荷较低,产气量也较小。该处产生的沼气也是由三相分离器收集,通过集气管导出处理系统。经过填料区处理后的废水经三相分离器作用后,上清液经出水区排走,颗粒污泥则返回污泥床。
IC厌氧反应器处理工艺
技术保护点】
1.一种高效B‑ABR厌氧反应器,包括一个箱体结构的反应器本体(1),其特征在于,所述的反应器本体(1)被分为左、右两格厌氧区,所述的左格厌氧区由上填料骨架(3)、左导流板(6)、下填料骨架(5)和反应器本体(1)的左侧壁相互连接组成,所述的上填料骨架(3)和下填料骨架(5)之间设有聚氨酯软性填料(4);所述的左导流板(6)的上端与反应器本体(1)的顶部连接;所述的右格厌氧区由填料上隔网(9)、右导流板(8)、填料下隔网(11)和反应器本体(1)的右侧壁相互连接组成;所述的填料上隔网(9)和填料下隔网(11)之间设有聚氨酯组合球形填料(10);所述的右导流板(8)的上端与反应器本体(1)的顶部连接;所述的反应器本体(1)上边两侧设有左、右入孔(13)和(14),其左侧壁和右侧壁的上端分别设置布水装置(2)和出水装置(12);所述的左导流板(6)和右导流板(8)之间设有中间导流板(7),所述的中间导流板(7)的下端与反应器本体(1)的底部连接;所述的左导流板(6)、中间导流板(7)和右导流板(8)的自由端均与反应器本体(1)有间隙。
C反应器存在的缺点为:
经污泥分析表明,IC反应器比UASB反应器内含有的细微颗粒污泥(形成大颗粒污泥的前体)浓度高,加上水力停留时间相对短,高径比大,所以IC反应器的出水中含有更多的细微颗粒污泥,这使后续沉淀处理设备成为必要。
其主要控制参数有如下几个方面:
⒈营养物质 污水中各种营养物质的量及比例营养卫生物的生长、繁殖,从而影响好氧阶段的处理效果。主要的营养物质包括:C、N、P、Ca、H、Mg等,次要营养物之包括:Zn、Na、Cl、Cu等,一般来说,废水中所含有的营养物质均能达到细菌所需要的营养物质的要求,满足微生物的新陈代谢作用。
⒉溶解氧 溶解氧是影响好氧处理运行系统重要的影响因素。溶解氧不足时,氧在水与微生物之间的传递速率会下降,会使好氧微生物活性受到影响,新陈代谢能力减弱,从而使有机物氧化过程不能彻底进行,出水有机物浓度变高,处理效果降低,同时其浓度降低时,厌氧微生物会大量繁殖,好氧微生物受到抑制会大量死亡。浓度过高也不可以,一般来说容易出现污泥膨胀现象。一般来说溶解氧浓度应该不低于2.0。
⒊温度 温度对好氧阶段的影响是多方面的,温度的改变,参与净化的生物种属于活性以及生化反应的速率都会随之变化。温度通过两种方式来影响生化反应:一方面是影响酶的反应速率,另一方面是影响基质向细菌的扩散速率。好氧处理中大多数作用菌属于中温菌,而浓度在20~35℃范围内生长良好。在这个范围内,其处理有机物的活性随温度提高而增高,直至温度上升至使其酶的活性消失为止。
⒋污泥微生物浓度MLVSS 好氧阶段污泥浓度MLSS设计为5g/L,一般来说MLVSS/ MLSS值为0.75左右,也就是说微生物浓度MLVSS应该为3.75g/L左右,污泥中微生物浓度的高低会影响污泥的絮凝性和沉降性。我公司污水站现在的污泥浓度基本在要求之内,但是微生物浓度还有些低,MLVSS/ MLSS比值在0.5左右,也就是说污泥结构组成不好,所以会经常出现死泥,漂泥等现象。 ⒌污泥有机负荷N:如果条件允许的话,污水站一般采用的都是低负荷处理 (<0.3KgBOD5/KgTSS.d>,高负荷处理会增加污水的处理费用,不如厌氧处理经济,效果也不是很好,影响出水水质。由于公司现在还不能进行BOD分析化验,暂时污泥COD负荷和容积COD负荷来监测耗氧阶段的运行。
⒍微生物停留时间MCRT 微生物停留时间MCRT即泥龄,为池内的污泥量与每日排放污泥量的比值。微生物的停留时间一般维持在5~8d为宜,污泥量少,会使负荷变大,进而减少对废水中有机物处理的量,污泥龄过高,污泥老化严重,会影响后续设施的处理难度,使沉淀池的内的沉降困难,出水水质变差。
⒎水力负荷 水力负荷是一个不易控制的因素,它取决厌氧阶段的来水量,厌氧阶段正常运行时,水力负荷比较高,当厌氧阶段出现问题后,水力负荷又会迅速下降。水力负荷的影响表现在污水在好氧池内的停留时间及二沉池的沉降效果,如何使污水的流量趋于一个稳定值是以后应该考 虑的问题。
⒏污泥容积指数SVI 污泥容积指数是对污泥沉降性能和污泥絮凝性能等指标的评价。作为污泥沉降性能和污泥絮凝性能的硬性评价,其值可以由污泥30分钟沉降比/污泥浓度来计算。其范围一般在50~150之间,SVI小于50,表明污泥活性低,SVI大于150,表明污泥有可能发生膨胀。