炼钢转炉氨逃逸尾气分析系统
隨着我国社会经济的发展,能源的消耗量以及需求量在不断增加,人们生活水平的提高对电能的需求量也在不断上升,而我国主要供电的方式是以燃煤为主的火力发电,这就需要消耗大量的煤炭资源,并且对生态环境产生了*的影响。本文的研究中主要分析了脱硝、脱硫以及湿电除尘的应用,对相关改造方案进行了相应的分析,结合某电厂的实际情况,选了使用较为普遍、技术比较成熟的SCR脱硝、湿电除尘技术。其中主要研究的内容有SCR烟气脱硝中的还原剂的选择使用、脱硝反应器增加和其他相关配套设施布置方式以及湿式电除尘器的选型等,通过对该电厂机组进行相应的排放改造后,进行相应的性能分析,监测到相关污染物的排放都能够达到排放标准的要求,从而有效达到热电联产机组排放改造的目的。
2 某热电联产机组相关环保装置分析
2.1 脱硝装置分析
针对文章所研究的电厂,在其#1、#2机组脱硝装置中,脱硝设计入口处的氮氧化物应该小于350mg/Nm3,脱硝设计的效率应该大于80%;在脱硝系统中没有相应的反应器烟气旁路和省煤器高温旁路系统;脱硝应用的还原剂采用液氨制备,脱硝的工艺采用的是选择性催化还原脱硝工艺[1]。
2.1.1 相关工艺系统概述。脱硝装置中的烟气系统包括烟道、SCR反应器、催化剂、氨/空气混合器等。在烟气系统的SCR反应器中,氨气会与催化剂层中的烟气进行混合,并且在催化剂的作用下,烟气中的NOX会和氨气进行反应并分解成氮气和水,对环境不会产生危害。在脱硝装置中设置有三层催化剂层,其使用的催化剂只能为18孔蜂窝式催化剂,该装置中的催化剂设计层只安装使用了两层,剩余一层是为了更高的环保要求进行加装催化剂使用,也称之为预留层。根据相应的烟气参数需要合理设计催化剂之间的节距,这样能够有效阻止积灰和堵塞的情况发生,对装置进行密封能够保持较高的脱硝效率。
2.1.2 脱硝装置运行现状分析。根据相关数据可知,在#1、#2机组脱硝装置的入口处,NOX的实际运行浓度在200~600mg/Nm3之间,平均的运行浓度为350mg/Nm3,而出口处的实际运行浓度在120mg/Nm3以下,平均的运行浓度为70mg/Nm3。根据相应的运行数据分析,在脱硝装置入口处的烟温在295~380℃之间,现在进行脱硝时设计的烟温为375℃,但在实际运行过程中,氨温度要求为310℃,在电厂#2机组左侧区域大约10%的部分,其运行状态低于喷氨温度,机组处于低负荷时,#2机组的左侧具有较低的烟温,在相应的工况下,50%的时间烟温低于喷氨温度。
2.2 机组除尘装置分析
对于电厂#1、#2机组,每炉都配置了一台喷吹袋式除尘器,单台除尘器设计的过滤面积为36599m2,风速为0.899m/min,滤袋的数量为11296,使用的材质为超细纤维PPS。使用单台炉进行处理的烟气量能够达到1974839m3/h,装置设计入口的含尘浓度小于或者等于36g/Nm3,设计的除尘效率应该到达99.9%,这样才能够保证除尘器的出口处的尘浓度会在30mg/Nm3以下。根据相关数据进行分析可以得知,袋式除尘器在正常运行的时候,其出口处烟尘排放的浓度均小于30mg/Nm3,并且有80%的时间烟尘排放的浓度小于10mg/Nm3。
炼钢转炉氨逃逸尾气分析系统