电磁式流量表
先来看看电容,电容的作用简单的说就是存储电荷。我们都知道在电源中要加电容滤波,在每个芯片的电源脚放置一个0.1uF的电容去耦。等等,怎么我看到要些板子芯片的电源脚旁边的电容是0.1uF的或者0.01uF的,有什么讲究吗。要搞懂这个道道就要了解电容的实际特性。理想的电容它只是一个电荷的存储器,即C。而实际制造出来的电容却不是那么简单,分析电源完整性的时候我们常用的电容模型如下图所示。图中ESR是电容的串联等效电阻,ESL是电容的串联等效电感,C才是真正的理想电容。
液体流量计是根据卡门涡原理制造用于测量密封管道中液体、气体、蒸汽流量的精密仪表。
液体流量计是根据卡门涡原理制造用于测量密封管道中液体、气体、蒸汽流量的精密仪表,由于检测元件密封在检测体内,不被测介质,且内部可动部件,无需进行现场维护,因此深受广大用户的推崇,被广泛用于纺织印染、石油、化工、冶金制药、热电、造纸,消防工业的计量管理及过程控制.有带现场显示3.6V电池供电和外供电源及输出4-20mA;远传显示可配二次仪表液晶中文显示,同时可带温度压力补偿 。仪表直读式,不需换算,使用方便,质量可靠)。
电磁式流量表
为了保证测试精度,PA系列功率分析仪采用了业界的同步时钟——高稳定性温度补偿的100MHz同步时钟,严格保证ADC对各通道电压、电流的同步采样,从而保证功率精度。100MHz同步时钟具体是一个什么概念,我们可以通过一组数据来反映。100MHz的同步时钟引起的时间误差为10ns,对于50Hz工频信号(周期20ms)而言,10ns的时钟误差引起的相位测量误差为:以上数据可能很多人看了并没有感觉,下面我们做一个对比,用业内常用的10M同步时钟与PA系列100M同步时钟对不同相位角下测量的误差做一个比对,相信大家看完之后就会明白同步时钟的重要性。
无可动部件,运行可靠,性能较好,使用寿命长.
测量被测流体,不直接接触传感器,性能稳定.
压力损失较少,故比差压流量计具有节能特点.
结构简单而牢固,安装方便,维修费用极少
传感器技术是实现测试与自动控制的重要环节。在测试系统中,被作为一次仪表定位,其主要特征是能准确传递和检测出某一形态的信息,并将其转换成另一形态的信息。具体地说传感器是指那些对被测对象的某一确定的信息具有感受(或响应)与检出功能,并使之按照一定规律转换成与之对应的可输出信号的元器件或装置。如果没有传感器对被测的原始信息进行准确可靠的捕获和转换,一切准确的测试与控制都将无法实现,即使现代化的电子计算机,没有准确的信息(或转换可靠的数据),不失真的输入,也将无法充分发挥其应有的作用。
流量测量的发展可追溯到古代的水利工程和城市供水系统。古罗撒时代已采用孔板测量居民的饮用水水量。公元*0年左右古埃及用堰法测量尼罗河的流量。我国的都江堰水利工程应用宝瓶口的水位观测水量大小等等。17世纪托里拆利奠定差压式流量计的理论基础,这是流量测量的里程碑。自那以后,18、19世纪流量测量的许多类型仪表的雏形开始形成,如堰、示踪法、皮托管、文丘里管、容积、涡轮及靶式流量计等。20世纪由于过程工业、能量计量、城市公用事业对流量测量的需求急剧增长,才促使仪表迅速发展,微电子技术和计算机技术的飞跃发展极大地推动仪表更新换代,新型流量计如雨后春笋般涌现出来。至今,据称已有上百种流量计投向市场,现场使用中许多棘手的难题可望获得解决。
我国开展近代流量测量技术的工作比较晚,早期所需的流量仪表均从国外进口。
流量测量是研究物质量变的科学,质量互变规律是事物发展的基本规律,因此其测量对象已不限于传统意义上的管道液体,凡需掌握量变的地方都有流量测量的问题。流量和压力、温度并列为三大检测参数。对于一定的流体,只要知道这三个参数就可计算其具有的能量,在能量转换的测量中必须检测此三个参数。能量转换是一切生产过程和科学实验的基础,因此流量和压力、温度仪表一样得到广泛的应用。
不过,此类应用中存在一个经常被忽视的问题,即外部信号导致的高频干扰,也就是通常所说的“电磁干扰(EMI)”。EMI可以通过多种方式发生,主要受终应用影响。,与直流电机接口的控制板中可能会用到仪表放大器,而电机的电流环路包含电源引线、电刷、换向器和线圈,通常就像天线一样可以发射高频信号,因而可能会干扰仪表放大器输入端的微小电压。另一个例子是汽车电磁阀控制中的电流检测。电磁阀由车辆电池通过长导线来供电,这些导线就像天线一样。
使用时,正确的使用步骤不仅有利于机器的运行,还可以增加流量计的性能,因此,明白液体流量计的使用步骤是很有必要的。下面,来说一下液体流量计的正确使用步骤:
在使用压力传感器前,对其进行性能测试。将它接上透明的水管,用水柱高坐压力,用高灵 敏度数字万用表测量电压,
不足之处是在安装时需要一定直管段,且普通型对于振动和高温没有很好的解决办法。涡 街有压电式和电容式,后者在耐温和耐振动方面有优势,但价格较贵,一般用于过热蒸汽的测量。
只要能传播声音的流体均可以用液体流量计; 超声波流量计可以测量高粘度液体、非导电性液体或气体的流量,其测量流速的原理是:超声波在流体中的传播速度 会随被测流体流速而变化。
容积式流量计 容积式流量计是通过测定壳体和转子之间形成的计量容积来测量流体的体积流量。 根据转子的结构形式, 容积式流 量计有腰轮式,刮板式、椭圆齿轮式等。
随着工业发展对流量计量要求的不 断提高,液体流量计在工业测量中的地位已经部分地被先进的、高精度的、便利的流量仪表所取代。
液体流量计基于法拉第电磁感应原理研制出的一种测量导电液体体积流量的仪表。
又称转子流量计,是变面积式流量计的一种, 在一根由下向上扩大的垂直锥管中,圆形横截面的浮 子的重力是由液体动力承受的。
浮子可以在锥管内自由地上升和下降。在流速和浮力作用下上下运动与浮子重量 平衡后, 通过磁耦合传到与刻度盘指示流量。
传感器街上 12v 电压。记录数据。如成线性关系,则表示性能稳 定,可以使用。
CAN_H与CAN_L短接:测试CAN_H,CAN_L短路1分钟,恢复后DUT是否能恢复通讯。测试接线本测试使用CANScope-Pro与CANScope-StressZ扩展板,程控电源。需要DUT上电后,一直发送CAN报文,方便进行测试。其黑色表笔(地)要和DUT的CAN收发器共地。将启用示波器勾去掉,即不使能示波器,这时CANScope的CAN接口即为电气隔离的。如下图所示,进行测试连接。容错性能测试接线图测试过程地线漂移:l如果DUT的CAN接口为隔离的,则需要将程控电源电压+-串联入DUT和CANScope的GND连接(黑色表笔);l如果DUT的CAN接口为非隔离的,则需要将程控电源电压+-串联入DUT供电的GND线。