便携式气体分析仪 其核心部分是一个激光检测装置,其中的氦氖激光器可以发射一种安全的低功率单波激光到一个气体测试腔内。由于激光能量微弱,装置内部通过检测腔两端的反射镜不断进行反射,将能量放大1000倍左右。光子与气体分子发生碰撞后发生散射,产生一种不同于激光频谱的光谱,而且不同分子散射出来的光谱是特定不相同的,这就是我们所称的“拉曼散射光谱”。检测腔内壁装有8个光学滤波器和光电传感器,用来吸收和检测不同分子的特定光谱频率,从而得到8种不同待测气体成分含量。根据这种原理,每种待测气体的含量都是通过直接测量得到的,不需要任何的导算;RLGA的检测精度更高;反应速度更快.
便携式气体分析仪
DLAS技术本质上是一种光谱吸收技术,通过分析激光被气体的选择性吸收来获得气体的浓度。它与传统红外光谱吸收技术的不同之处在于,半导体激光光谱宽度远小于气体吸收谱线的展宽。因此,DLAS技术是一种高分辨率的光谱吸收技术,半导体激光穿过被测气体的光强衰减可用朗伯-比尔(Lambert-Beer)定律表述式得出,关系式表明气体浓度越高,对光的衰减也越大。因此,可通过测量气体对激光的衰减来测量气体的浓度。
分析仪按照光学系统划分,可分为双光路和单光路两种:
(1)双光路:从两个相同光源或一个精确分配的单光源,发出两路彼此平行的光束,分别通过分析气室后和参比气室后进入检测器。
(2)单光路:从光源发出单束红外光,利用切光装置将红外光调制成不同波长的光束,轮流通过分析气室进入检测器。