便携式微量氧分析仪其核心部分是一个激光检测装置,其中的氦氖激光器可以发射一种安全的低功率单波激光到一个气体测试腔内。由于激光能量微弱,装置内部通过检测腔两端的反射镜不断进行反射,将能量放大1000倍左右。光子与气体分子发生碰撞后发生散射,产生一种不同于激光频谱的光谱,而且不同分子散射出来的光谱是特定不相同的,这就是我们所称的“拉曼散射光谱”。检测腔内壁装有8个光学滤波器和光电传感器,用来吸收和检测不同分子的特定光谱频率,从而得到8种不同待测气体成分含量。根据这种原理,每种待测气体的含量都是通过直接测量得到的,不需要任何的导算;RLGA的检测精度更高;反应速度更快.
一台气体分析仪或一套气体分析系统相当于一套完整的化工工艺设备,因此,气体分析仪器系统工作过程就是在实现一系列的化工过程。若想通过气体分析得到准确数据,就必须了解这一系列化工过程中各阶段的情况及变化,认真研究并掌握其中的规律,只有这样才能达到准确测定的目的。
便携式微量氧分析仪
按照光学系统划分,可分为双光路和单光路两种:
(1)双光路:从两个相同光源或一个精确分配的单光源,发出两路彼此平行的光束,分别通过分析气室后和参比气室后进入检测器。
(2)单光路:从光源发出单束红外光,利用切光装置将红外光调制成不同波长的光束,轮流通过分析气室进入检测器。
质谱分析法是利用不同离子在电场或者磁场中运动轨迹的不同,把离子按质荷比分离而得到质量图谱,可以得到样品的定性定量结果。质谱仪按照常用的质量分离器不同可分为扫描磁扇式磁场质谱仪和四极质谱仪,飞行时间质谱仪等几种类型。目前工业应用上通常采用的是扫描磁扇式质谱仪。四极质谱仪的灵敏度高,适合实验室或科学研究。扫描磁扇式的稳定性和重复性较高,适合工业应用。
不仅在一台气体分析仪器内部具备一套化工工艺过程的同样情况和条件,而且,有时在仪器前级的样气预处理部分(含取样系统)也同样是一套化工工艺过程。如遇到较复杂、较特殊的工艺技术条件的话,那么样气预处理系统所体现的化工过程还是非常复杂的,相当于一个小化工厂的净化处理工艺过程。由此可见,气体分析的过程就是在了解并掌握整个化工过程系统条件的前提下,严格控制各种影响测定条件的因素,从而得到工艺及管理人员所需要的准确数据。