便携式微量氧分析仪其核心部分是一个激光检测装置,其中的氦氖激光器可以发射一种安全的低功率单波激光到一个气体测试腔内。由于激光能量微弱,装置内部通过检测腔两端的反射镜不断进行反射,将能量放大1000倍左右。光子与气体分子发生碰撞后发生散射,产生一种不同于激光频谱的光谱,而且不同分子散射出来的光谱是特定不相同的,这就是我们所称的“拉曼散射光谱”。检测腔内壁装有8个光学滤波器和光电传感器,用来吸收和检测不同分子的特定光谱频率,从而得到8种不同待测气体成分含量。根据这种原理,每种待测气体的含量都是通过直接测量得到的,不需要任何的导算;RLGA的检测精度更高;反应速度更快.
便携式微量氧分析仪DLAS技术本质上是一种光谱吸收技术,通过分析激光被气体的选择性吸收来获得气体的浓度。它与传统红外光谱吸收技术的不同之处在于,半导体激光光谱宽度远小于气体吸收谱线的展宽。因此,DLAS技术是一种高分辨率的光谱吸收技术,半导体激光穿过被测气体的光强衰减可用朗伯-比尔(Lambert-Beer)定律表述式得出,关系式表明气体浓度越高,对光的衰减也越大。因此,可通过测量气体对激光的衰减来测量气体的浓度。
气体检测仪是一种气体泄露浓度检测的仪器仪表工具,主要利用气体传感器来检测环境中存在的气体种类,气体传感器是用来检测气体的成份和含量的传感器,它具有体积小、重量轻、响应快、同时多气体浓度显示的特点,使用起来也更加方便,可以实现特殊场合测量需要,对坑道、管道、罐体、密闭空间等进行气体浓度探测或泄漏探测。
操作简单、安全可靠;可测三十几种可燃气体及十几种气体,四个检测通道,一种可燃气及三种气体,可燃气通道可实现LEL与VOL之间的自动切换,自动背景灯液晶图形显示器可同时显示4通道测试值,预标定传感器用户可自行更换,即插即用,仪器可自动识别无需标定和调试即可正常使用。测量这种吸收光谱可判别出气体的种类;测量吸收强度可确定被测气体的浓度。红外线检测仪的使用范围宽,不仅可分析气体成分,也可分析溶液成分,且灵敏度较高,反应迅速,能在线连续指示,也可组成调节系统。工业上常用的红外线气体检测仪的检测部分由两个并列的结构相同的光学系统组成。
检测仪也同其它的分析检测仪器一样,都是用相对比较的方法进行测定的,一般认为,气体传感器的定义是以检测目标为分类基础的,也就是说,凡是用于检测气体成份和浓度的传感器都称作气体传感器,不管它是用物理方法,还是用化学方法。比如,检测气体流量的传感器不被看作气体传感器,但是热导式气体分析仪却属于重要的气体传感器,尽管它们有时使用大体*的检测原理。
可检测硫化氢,一氧化碳,氧气,二氧化硫,*,氨气,二氧化氮,*,二氧化氯,臭氧和可燃气体等多种气体,广泛应用在石化、煤炭、冶金、化工、市政燃气、环境监测等多种场所现场检测。 可以实现特殊场合测量需要;可对坑道、管道、罐体、密闭空间等进行气体浓度探测或泄漏探测。