IC内循环厌氧反应器点
IC内循环厌氧反应器详细介绍
IC内循环厌氧反应器点
设备标准化模块设计,适合安装;
设备集气效率、截固率高、气密性好;
缝隙宽度和遮盖宽度布置合理,污泥流失;
采用快开式浮渣清理装置,保证出气管畅通阻,不会堵塞;
启动速度快,不会出现断流、流等现象;
IC内循环厌氧反应器
设置在气、液、固三相分离器是上流式厌氧污泥床UASB的重要结构征,它对UASB的正常运行和获得良好的出水水质具有十分重要的作用。一般来说,三相分离器应满足以下要求:
沉淀区斜壁与水平的倾斜角度约50°(45°~60°),使沉淀在斜板上的污泥不聚集停留,能尽快滑回反应区内,这个角度也决定了三相分离器的高度,这个高度一般为0.5~1.0m。
混合液在进入沉淀区的孔道或缝隙内的流速不能大于2m/h,混合液在沉淀区的表面水力负荷要在0.7m3/(m2·h)以下,沉淀区的总水深应≥1.5m,并保证水流在沉淀区的停留时间为1.5~2.0h。
尽可能使沼气泡不进入沉淀区影响沉淀效果,反射板与缝隙之间的遮挡应该在100一200mm,集气室缝隙部分的面积占反应器总面积的15%~20%。
三相分离器内的气、液界面面积必须合适,适当的沼气释放速率大约为1~3m3/(m2·h)。释放速率过低过高会形成浮渣,释放速率过低又会导致形成泡沫,而泡沫和浮渣都可能导致堵塞沼气排放管。
为尽可能减少和防止气室产生和积聚大量的泡沫和浮渣,防止浮渣堵塞沼气的出气管,必须保证气室具有一定的高度,排气管直充足,使气室排气畅通阻。反应器的高度为5~7m时,集气室的高度应该为1.5~2m。
沉淀区体积是反应器体积的15%~20%,即三相分离器的高度为UASB反应器总高度的15%~20%。
工作原理
经过调节pH和温度的废水入反应器底部的混合区,并与来自外循环回流的泥水混合液充分混合后进入颗粒污泥膨胀床区进行COD生化降解,此处的COD容积负荷很高,大部分进水COD在此处被降解,产生大量沼气。由于沼气气泡形成过程中对液体做的膨胀功产生了气提的作用,使得沼气、污泥和水的混合物上升,经过填料区的降解后,混合液至反应器部的三相分离器,沼气在该处与泥水分离后并被导出处理系统。泥水混合物则沿挡泥板下降至反应器底部的混合区,并于进水充分混合后再次进入污泥膨胀床区,形成所谓内循环。根据不同的进水COD负荷和反应器的不同构造,外循环回流量可达进水流量的0.5-10倍。经膨胀床处理后的废水除一部分参与循环外,其余污水继续上升,污水进入填料区进行剩余COD降解与产沼气过程,提高和保证了出水水质。由于大部分COD已经被降解,所以填料区的COD负荷较低,产气量也较小。该处产生的沼气也是由三相分离器收集,通过集气管导出处理系统。经过填料区处理后的废水经三相分离器作用后,上清液经出水区排走,颗粒污泥则返回污泥床。
技术保护点】
1.一种高效B‑ABR厌氧反应器,包括一个箱体结构的反应器本体(1),其征在于,所述的反应器本体(1)被分为左、右两格厌氧区,所述的左格厌氧区由上填料骨架(3)、左导流板(6)、下填料骨架(5)和反应器本体(1)的左侧壁相互连接组成,所述的上填料骨架(3)和下填料骨架(5)之间设有聚氨酯软性填料(4);所述的左导流板(6)的上端与反应器本体(1)的部连接;所述的右格厌氧区由填料上隔网(9)、右导流板(8)、填料下隔网(11)和反应器本体(1)的右侧壁相互连接组成;所述的填料上隔网(9)和填料下隔网(11)之间设有聚氨酯组合球形填料(10);所述的右导流板(8)的上端与反应器本体(1)的部连接;所述的反应器本体(1)上边两侧设有左、右入孔(13)和(14),其左侧壁和右侧壁的上端分别设置布水装置(2)和出水装置(12);所述的左导流板(6)和右导流板(8)之间设有中间导流板(7),所述的中间导流板(7)的下端与反应器本体(1)的底部连接;所述的左导流板(6)、中间导流板(7)和右导流板(8)的自由端均与反应器本体(1)有间隙。
山东明基环保设备有限公司是从事现代环保水处理机械设备制造的厂商,公司基础设施强大,技术力量雄厚,总占地面积18000多平方米,企业内部管理完善,通过ISO9001:2000质量体系,多次被评为产量信的过企业,重合同守信用单位。山东明基环保将以优质的产品、完善的的售后服务,精益求精、开拓进取的务实精神服务于广大用户。